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Abstract--This paper describes experimental investigations on the behavior of an air-water two-phase 
mixture in a horizontal, radial-flow and square-sectioned straight channel, which rotates around an axis 
perpendicular to the channel. The hydraulic loss of head and the distributions of pressures and void 
fractions in the channel were measured mainly in a bubbly flow regime, and the effects of the rotating 
speed of the channel and the flow rate of water on the loss were discussed in relation to the inlet void 
fraction. When the rotating speed is increased or the flow rate of water is decreased, a predominant region 
of high void fractions appearing on the downstream negative side tends to expand upstream as the Rossby 
number is increased. An almost imperceptible pressure rise in the radial direction of this region causes 
an excessive increase in the hydraulic loss. 
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1. I N T R O D U C T I O N  

Although most hydraulic turbo-machinery is originally designed for handling sin#e-phase liquid 
flows, it is frequently operated under gas-liquid two-phase flow conditions. In such cases its 
performance generally deteriorates, depending on the circumstances. It is, therefore, practically 
important to know the behavior of mixtures in rotating fields and to establish methods to predict 
the flow characteristics and design the optimal machinery configuration. 

Minemura & Murakami (1988) have been studying the performance of centrifugal pumps of various 
specific speeds, mainly under a bubbly flow regime. They have found that performance is closely related 
to the flow patterns in the impeller. With the intention of clarifying the rotating effect of the flow 
field on the two-phase flow behavior in a simpler system than such practical flow channels, the flows 
in a radially uniform square-sectioned channel, which rotates around an axis perpendicular to the 
channel, were observed by Patel & Runstadler (1978) and numerically analyzed based on the 
one-dimensional theory of Zakem (1980a, b), both mainly under a bubbly flow regime. In their 
investigations, changes in the flow pattern and relative velocity between the two phases were discussed 
in relation to the volumetric flow rate of the liquid phase. Under single phase flow conditions, the 
flows in such a rotating channel are characterized by the Rossby number (Murakami & Kikuyama 
1972), which is the ratio of the Reynolds number for the flow velocity to that for the rotating speed. 
Even in two-phase flow conditions, the Rossby number should figure importantly, but the observations 
and calculations to date have not taken the Rossby number into consideration. Thus, the flows in 
the channels have been compared with those in an impeller having a very different Rossby number. 
In two-phase flow conditions, the flow characteristics are further complicated by the uneven 
distribution of the void fractions in the cross sections. Thus, the results of such observations and 
calculations cannot predict the true nature of the two-phase flows in pump impellers. 

To clarify the problems mentioned above, the flows in a rotating radial channel with a square 
section were experimentally investigated in this study, and distributions of pressures and void 
fractions were measured mainly under a bubbly flow regime. The resultant hydraulic loss was 
discussed in relation to the rotating speed and the velocity of the liquid phase, namely the Rossby 
number, as well as the volumetric flow ratio of air to water and the flow patterns. The channel 
is mounted on a horizontal disk rotated around an axis perpendicular to the channel, and the mixture 
flows in an outward radial direction from the center. 
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Figure 1. Layout of the experimental apparatus. 

2. E X P E R I M E N T A L  APPARATUS AND P R O C E D U R E  

2.1. Experimental apparatus 

Figure 1 shows the general arrangement of the experimental apparatus. A square-sectioned 
straight channel C),  made of transparent Plexiglas, is mounted radially on a horizontal disk and 
rotated with the disk around its vertical axis. Water from a reservoir tank enters a vertically running 
pipe through a regulating valve and an orifice to measure the water flow rate (~). Air from a 
compressor is led, through a regulating valve and a metering orifice (~), to the pipe at an elevation 
z/a = -15 ,  where the elevation from the bottom surface of  the rotating channel z is non-dimen- 
sionalized by the width of the square channel a. The air is mixed with the water through a porous 
nozzle (~) to generate a homogeneous flow with fine bubbles. The stationary pipe is connected 
through an oil-seal (~) with a rotating vertical pipe, the axis of which coincides with that of  the 
rotating disk. The flow in the pipe is horizontally directed by an elbow and introduced to the 
rotating straight channel (~), in which the distributions of the pressures and void fractions were 
measured. Downstream of the channel the mixture is released in the air through an elbow into a 
water collector tank C)- The way the elbow is directed upward or downward would obviously 
affect the flow behavior, so experiments in both directions were performed, When the system 
discharge is upward, the mixture is guided into the tank by a repelling box, by which the exit water 
level was maintained almost unaltered (z/a = 5.7). To measure the pressure rise in the rotating 
channel, the inlet static pressure on the stationary pipe wall, slightly upstream of the oil-seal 
(z/a = -6.7) ,  was measured at openings over the pipe cross section and then averaged with the 
aid of a ring manifold. 

The rotating channel shown in figure 2 is a square-sectioned straight straight pipe measuring 
283 mm long and 32 mm wide, with both ends connected to a 32 mm dia vertical pipe through an 
elbow. To minimize hydraulic losses in these connecting lines, the shape of the portion between 
the inlet elbow and the inlet of the square channel, 0.061 ~< r/r 3 ~<0.134, undergoes a gradual 
transition from a circular to a square section, and that between the channel and the outlet elbow, 
0.785 <~ r/r 3 <<. 0.854, changes from a square to a circular section. The radial coordinate r is denoted 
non-dimensionally by the outlet radius of the rotating channel r 3 . 

2.2. Experimental conditions 
In this study, flows in the rotating channel were measured mainly under a bubbly flow regime. 

The experimental conditions were as follows: the rotating speeds of the channel ranged from 0 to 
110 rpm; the volumetric flow rates of water ranged from 0.042 to 0.074 m3/min; and the volumetric 
flow ratio of air to whole fluid in the inlet section of the rotating pipe lines, E0, ranged from 0 to 
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Figure 2. Shape and dimensions of the rotating straight channel. 

0•08. Strobolight observations made it possible to achieve almost uniform dispersion of fine bubbles 
with 1-2 mm dia (i.e. bubbly flow condition) in the vertically running pipe under the above 
conditions. 

2.3. Measurement of the pressure distribution 

Wall pressures on the front and back sides of the rotating channel were  measured at three 
sections with different elevations from the bottom of the channel (z/a = 0.19, 0.5, 0.81) and at five 
positions (S1-$5) in the radial direction, at a total of 15 measuring points as shown in figure 2. 
The pressures were detected with semi-conductive pressure sensors through narrow openings, 
0.5 mm dia, drilled in the walls. Electrical signals obtained by the sensors were transmitted to a 
signal processing unit in a stationary system through slip-rings. In consideration of noise, the 
average of 5 measurements was employed for the pressure. 

2.4. Measurement of the void fraction distribution 

The local void fraction E was measured with a single optical fiber probe, so that the flow would 
not be affected by other probes• The probe was inserted into the openings for measuring wall 
pressures and traversed in the channel-width direction under remote control from the stationary 
system to measure the void fraction distributions. The measuring system consists of a semi-conduc- 
tive laser (15 mW), optical fibers (~b0.14) and the photodiode illustrated in figure 3. The tail end 
of the fiber was polished at an angle of 45 ° and its lateral side was coated with nickel. The fiber 
was bonded to a 0.7 mm dia support tube made of stainless steel, with a 10 mm length exposed, 
so that the flow behind it would not be disturbed by the support and the possible fiber vibration 
due to the flow. It is only when the slanted fber end is in the gas phase that the supplied laser 
beam is reflected and develops an output voltage to the photodiode. The output was transmitted 
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Figure 3. Measuring system of the optical fiber probe. 
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to the stationary system through the slip-rings and processed by sampling after amplification. The 
local void fraction was here defined to be the ratio of the time the gas phase was present over the 
probe to the total duration of the experiment (5 s), and the averaged value of e was used after 5 
measurements. Since the wave forms of the output voltage obtained were virtually rectangular, the 
results were hardly affected by the threshold value when distinguishing between gas and liquid 
phases. 

2.5. Definition of pressure losses 

If a homogeneous flow model, which postulates no slip between two phases and homogeneously 
dispersed gas phase, is applied to the bubbly flow in a channel rotating with a constant angular 
velocity co, the conservation law of energy for a steady-state condition can be expressed by the sum 
of the changes in energy of the mixture and the loss of pressure Apt p between the inlet and outlet 
of the channel as 

tp~-~-~'-$ ) PtprO)2(~ss)"l-(~s)q-Ptpg]dsl-Aptp=O, [1] 

where the density Ptp, the relative velocity Wtp and the pressure p under two-phase flow conditions, 
are the respective mean values over the channel cross section, and g and s denote the acceleration 
of gravity and the streamline coordinate, respectively. The subscripts 0 and 3 indicate the inlet and 
outlet of the rotating channel, respectively. 

Using integration by parts for the first term, [l] is reduced to 

[2] 

where u is the peripheral speed of the rotating channel and z is the elevation from the bottom 
surface of the channel. 

In this experiment the pressure change from P0 at the inlet to P3 at the outlet is very small and 
Po/P3 = 1.04, even if the maximum is attained. The corresponding change in the density Pip is also 
slight. Thus, let the density be constant; then Aptp can be expressed from [2] by the following 
equation: 

[-u3-uo W~p3- W ~  P3-Po (z3-zo) . [3] 
Aptp = Ptpg L ~gg 2g Ptpg 

When a single-phase liquid with density PL flOWS, the loss of pressure Ap is related to the velocity 
head and characterized by a friction factor. With the mean velocity in the channel W, the friction 
factor for the rotating channel ~ can be given by 

ap 

=_ PLg [4] 
W 2 

2g 
Under two-phase flow conditions, the loss is expressed as the pressure-loss multiplier ~b L, and 

is defined here by the ratio of the pressure loss in the two-phase flow Aptp to that in the single-phase 
liquid flow ApL under the same mass flow rate: 

~ (APtp~ '/2 

To obtain the pressure distributions in a radial direction, the static pressure p measured on the 
side walls of the mid-section (z/a = 0.5) between the top and bottom of the channel is referred to 
the wall value P0 at the stationary pipe just upstream of the rotating channel (z/a = -6.7) ,  and 
its dimensionless value A~kr is expressed as 

P -- (Po - Ptpg Az) [6] 
Al~/r = pLU2 
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Figure 5. Friction factor of single-phase water flow in the rotating channel: (a) upward exit; (b) downward 
exit. 

2.6. Dimensionless numbers 

As a dimensionless number expressing the angular velocity of the channel co, a Reynolds number 
for the rotating speed is used here as Rw ( = o~a2/2v; a is the width of the square channel; v is the 
kinematic viscosity of water), which corresponds, in due consideration of the liquid phase as the 
continuum medium, to the ratio of the Coriolis force to the viscous force acting on a unit volume 
of the liquid phase. As a dimensionless number for the flow rate, a relevant Reynolds number for 
the superficial liquid velocity WL is used as Re ( = aWL~v), when it is assumed that the liquid phase 
alone flows even in two-phase flow conditions. In this case the Rossby number Ro, the ratio of 
the inertial force to the Coriolis force, is given by the ratio of Re to Rw, i.e. Ro = 2WL/aO~. The 
value of Ro for radial-flow pumps of low specific speed, in general, is 0.05 < 1/Ro < 1 under the 
rated flow condition.t 

3. EXPERIMENTAL RESULTS AND DISCUSSION 

3. I. Hydraulic loss in single-phase water flow 

When a liquid flows in stationary pipes, its friction factor ~0 depends on Re. Such a dependence 
for the channel employed in this experiment is shown in figure 4, where the results for the channel 
with upward and downward exits are plotted by the symbols O and D, respectively. Both values 
of ~0 decrease similarly with an increase in Re and become constant in the range Re I> 2.5 x 104. 
The channel with a downward exit has less loss, which is probably attributable to less interference 
of secondary flows. Even when the fluid flows into the inlet elbow with a uniform velocity, the axial 
component of the velocity behind the elbow becomes higher toward the outside of the curvature 
due to the secondary flow, and the fluid flows rectilinearly into the outlet elbow with this 
distribution. When the exit elbow is oriented downward, therefore, the higher velocity component 
flows into the exterior curvature of the outlet elbow and counterbalances the effect of the secondary 
flow. But the channel with an upward exit presents the opposite case. 

Figure 4 also includes the results for a U-shaped return-bend with a circular section, measured 
earlier by Murakami & Kikuyama (1972). The bend has an additional return pipe to the present 
channel and a greater radius of curvature, R/a = 1.44, where R is the radius of curvature of the 
bend and inlet and outlet elbow, and a is the pipe diameter. The greater elbow radius results in 
much smaller ~0, owing to the smaller effect of the secondary flow. For the present channel, 
R/a -- 0.5, which apparently corresponds to that of radial-flow pumps. 

When the channel is rotating, the loss ~ decreases with an increase in Re as shown in figure 5(a), 
where the results for the channel with the upward exit are expressed dimensionlessly by that for 
the stationary pipe ~0 as ~/~o and plotted for various dimensionless rotating speeds Rw. From the 
results, it can be seen that the smaller the flow rate or the higher the rotating speed, the greater 
the loss becomes. When the rotating speed is reduced to Rw = 0.9 x 103, however, the ratio ~/~0 
becomes unity over the whole range of Re, not showing any effects of the rotation. In figure 5(a), 

tThe value Ro is calculated here based on the relative velocity and hydraulic diameter at the impeller inlet. 
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the results obtained by Murakami & Kikuyama (1972) are also plotted by - - - - -  lines for the cases 
of Rw = 2 x 103, 5 x l03 and 1 x l04. They show almost the same tendency as those for the present 
study except for the lower rotating speed Rw = 2 × l03. 

The results for the channel with the downward exit plotted in figure 5(b) show the same tendency 
as for the upward exit. The value of (/~0, however, is larger than that for the upward exit 
and its maximum is about 3.4 times that of the upward exit. This greater sensitivity to the rotation 
is a disadvantage in the channel with the downward exit, though less so in a stationary state 
(figure 4). 

As described above, the ratio (/(0 is related to Re and Rw, suggesting that the results are 
closely related to Ro, which is the ratio of Re to Rw. Such a relationship between (/(0 and the 
inverse of Ro, l/Ro, is confirmed with the same data in figure 6, where the results for the upward 
exit, plotted with various symbols, are seen to fall on a single curve. When the flow rate decreases 
or the rotating speed increases, namely where 1/Ro increases, the ratio (/~0 becomes greater than 
unity in the range 1/Ro >0.08 and increases progressively with increasing l/Ro, reflecting 
the remarkable effect of rotation. For the channel with a downward exit it is also expressed with 
a single curve, as plotted by the - - - - -  line in figure 6. This result, however, begins to increase 
at a lower value of 1/Ro (1/Ro = 0.035) than for the upward exit, and increases more rapidly. The 
results of Murakami & Kikuyama (1972), shown by the line, increase rapidly when 
1/Ro > 0.09. 

In consideration of the similarity to impeller flows, we find that the results for the channel with 
an upward exit are more affected by the inlet curvature (figure 4) and less by the rotation (figure 6). 
In what follows, impellers show excessive losses, such as inlet shock loss and the loss due to the 
curved passage, and the effect caused by the rotation is expected to be relatively small. 

3.2. Hydraulic loss in air-water two-phase flow 

When the mixture flows in a stationary channel, the relationship between the pressure-loss 
multiplier 0 2  and Re is expressed as a function of the inlet void fraction e0, as shown in figure 7. 
When the void fraction is as small as E0 ~< 0.009, the value 0[0 nearly equals unity in almost the 
whole range of Re. This shows that the loss is not affected by the existence of the gas phase. When 
e0 is greater, however, the curve ~20 shifts upward in parallel and the value ~20 increases rapidly 
with a decrease in Re for the range Re < 2.5 x 104. 

When the channel is rotated, the pressure-loss multiplier ~[  increases with increasing ~0, as 
shown in figure 8, in which the results for various Rw and Re values are plotted. The top of figure 8 
gives the results for the lower rotating speed of Rw = 3 x l03. The value ~ for the smaller flow 
rate of Re = 2.5 x l04 increases with the increase in e0, but it remains almost unaltered when 
E0/> 0.05. At the larger flow rates of Re = 3 x 104 and 3.5 x 104, the values of 0 2 nearly equal unity, 
being unaffected by ~0, but they increase in the range e0 > 0.04 and take almost the same value as 
that for Re = 2.5 × l04 when E 0 > 0.07. 
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The middle section of figure 8 shows the results for the higher rotating speed of Rw = 4 x 103. 
~ increases more rapidly with an increase in E0. With a decrease in Re, ~ begins to increase at 
a smaller value of E0. The bottom section of figure 8 shows the results for the highest rotating speed 
of Rw = 5 x 103. ~2 increases more rapidly. Consequently, the smaller the flow rate of water or 
the higher the rotating speed (i.e. the larger the 1/Ro value), the greater the loss ~ becomes, even 
in two-phase flow conditions. 

Figure 9 shows the relationship between ~ and 1/Ro for various values of E0. The value ~[  
equals unity in the lower range of 1/Ro and increases sharply when 1/Ro is increased beyond a 
certain value, similar to the relationship between ~/~0 and 1/Ro for the single-phase flow (figure 6). 
When e0 is increased, the curve of ~ ~ shifts upward in parallel and shows a rapid increase at the 
lower value of 1/Ro. The bands in figure 9 indicate the flow regime boundary described later (in 
figure 15), where the bubbly flow changes into slug flow as the value of 1/Ro increases. These bands, 
therefore, reflect the point where the homogeneous assumption implicit in the way the velocity Wtp 
is evaluated is no longer valid, owing to the existing velocity difference between the two phases. 

When the loss for the rotating channel ~[  shown in figure 9 is divided by that for the stationary 
one ~ 0 ,  the resultant ~ [ / ~ 0  represents the effect of the rotation, as shown in figure 10, where 
the results for E0 = 0.032 are plotted with different symbols for various Rw and those for the 
different values of E0 are represented by various lines. When l/Ro < 0.1, the ratio ~ [ / ~ 0  nearly 
equals unity, being the same as that for the stationary pipe. When 1/Ro is increased beyond the 
limit, the ratio begins to increase, at a greater rate with increasing E0. 

3.3. Pressure distributions in the radial direction 

Since losses under two-phase flow conditions change in accordance with Ro, as described in 
figures 9 and 10, the related distributions of the pressure A~r in the radial direction are also changed 
in accordance with Ro, as shown in figure 11 where the results on the front (P.S.) and back (N.S.) 
sides for various E0 are shown by the symbols © and U], respectively. 

When 1/Ro is only 0.086, the effects of the rotation and E0 are slight and the value of A~br on 
the front side is higher than on the back side, due to the Coriolis force shown at the top in figure 11. 
In this figure, the idealized pressure rise for inviscid single-phase flow is indicated by the - - - -  
line, which almost parallels the experimental results, and a remarkable loss arises mainly in the inlet 
elbow. For small ~0 ~< 0.05, the distributions on the front side remain almost unchanged, and those 
on the back side shift downward in parallel. Even when E0 = 0.08, the distribution curves are still 
parallel, though they are shifted downward. This suggests that the entrained air is easily discharged 
from the channel, owing to an inertial force of flow greater than the Coriolis force; i.e. the internal 
flow conditions remain substantially unaltered. 

MF 191~--C 
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When 1/Ro exceeds a certain value, the loss under the two-phase flow conditions increases 
rapidly as described. When the results are slightly greater than the limit (1/Ro = 0.12), they are 
as plotted in the middle section of  figure 11. For a smaller value of Co, such as E0 ~< 0.032, A~br in 
the rear half of the channel decreases more, but the distributions are similar to those for 
1/Ro = 0.086 (top of  figure 11). For a larger value, E 0/> 0.05, however, A~kr decreases greatly in the 
outlet region (r/r 3 >1 0.61) and the pressure rise in the radial direction is almost nil. In this range 
of  e0 there exists a predominant region of  high void fractions near the outlet, as described in the 
next section, and a greater loss of pressure is brought about in this lower density region. 

When 1/Ro is increased to 1/Ro = 0.2, the results are greatly affected by E0 as shown at the 
bottom of figure 11. Owing to a small flow rate of water, the loss in the inlet elbow is so little that 
the pressure distribution under the single-phase flow is almost the same as the ideal one. Even for 
small E0, however, the pressure rise is less in the downstream region, which expands upstream with 
the increase in e0. This is attributable to the change in the flow conditions described in the next 
section. 

The pressure distributions in two horizontal sections displaced upward and downward 
(z/a = 0.19, 0.81) show changes similar to those indicated in figure 11 (a/z --- 0.5), so they are not 
displayed here. But near the outlet in the upper section (z/a = 0.81), A~br becomes less due to the 
increase in e. 

3.4. Distributions of the void fraction 
The hydraulic loss as well as the pressure distribution in the channel is closely related to the flow 

conditions, as discussed from the standpoint of  the distributions of void fraction in the following. 
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From measured void fractions E on a central section between the bottom and top of the horizontal 
channel (z/a =0.5), contour lines of Et are obtained as illustrated in figures 12-14, where the 
coordinate axes are a dimensionless radial coordinate r/r3 and a dimensionless width coordinate 
y/a, respectively, and the values of y/a = -0.5 and 0.5 correspond to the front (P.S.) and back 
(N.S.) sides of the channel, respectively. 

When 1/Ro is small, 1/Ro = 0.086, the distribution is rather uniform over the whole channel, 
as seen in figure 12. The results for ~ = 0.016, plotted in figure 12(a), show a so-called saddle-type 
distribution in the inlet region (0.13 ~ r/r3 ~ 0.33); thus, the value of E becomes lower in the center 
of the passage. Such a distribution is also observed for upward bubbly flows in stationary vertical 
pipes, which accounts for the effect of the lift force generated by the relative velocity between two 
phases (Rouhiainen & Stachiewicz 1970). The distribution obtained in this experiment, however, 
is considered attributable to the fact that air bubbles are caught in a pair of vortexes induced by 
the secondary flow due to the curvature of the inlet elbow. In the downstream region, however, 
the saddle-type distribution disappears and the value E increases on the back side. This is 
attributable to the fact that the bubbles shift toward the back side from the front in the course 
of the flow, owing to the pressure gradient produced by the Coriolis force. Figure 12(b) shows the 
results for ~ = 0.032. Although the value E is increased near the front of the inlet, its maximum 
is E/60 = 2 at most, and it maintains a rather uniform distribution. 

When 1/Ro is larger, 1/Ro = 0.12, the distributions depend on the inlet void fraction 60 as shown 
in figure 13, where the results for E0 = 0.016, 0.032 and 0.05, 0.08 are indicated. When 60 ~ 0.032, 
the distributions are seen to be similar to the case in figure 12. With an increase in ~0, however, 
the value ~ near the downstream back side increases progressively. A void region of 6 i> 0.9, as well 
as predominating region of high void fractions of 6 >I 0.6, appears and spreads upstream into the 
inlet when 60 i> 0.5. As these regions were measured almost consistently, the flow regime is supposed 
to be changed there from bubbly flow into slug flow. In this predominant region (E I> 0.6) the 
pressure ceases to increase in a radial direction, as seen in the middle of figure 11. Although the 
illustration is omitted, the value 6 near the top side of the channel becomes higher in the 
downstream direction, because the bubbles shift vertically upward due to buoyancy. 

Figure 14 shows the results for the much greater 1/Ro = 0.2. Even at small E0 = 0.016, there is 
a dominating region of high void fractions (6 i> 0.6) near the back side in the region r/r3 >t 0.52, 
where nil pressure arises in a radial direction (see the bottom section of figure 11). Although such 
a dominating region was observed consistently at ~0=0.016, under strobolighting the region 
appears to oscillate in the radial direction when E0 I> 0.032; the time cycle of the oscillation was 
smaller than the inverse of the angular velocity of the rotating channet 1/o~. 

t T o  d raw the con tou r  fines o f  void f ract ions  ~, 48 t r iangular  e lements ,  with  vertexes cor respond ing  to 35 measu r ing  po in t s  
for void fract ions,  were const ructed .  A linear in terpola t ion  m e t h o d  was  then applied on  each side o f  a t r iangle to obta in  
the po in t  o f  equi-void fraction. 
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Figure 13. Distributions of void fractions for medium Ro (I/Ro = 0.]2). 

According to the analytical model for the flow regime transitions by Taitel & Dukler (1976), 
gas-liquid two-phase flows in horizontal and inclined pipes are mapped with a solid line for the 
dispersed bubble and intermittent (slug and plug) regions shown in figure 15, where the coordinate 
X is the so-called Lockhart-Martinelli parameter ( =  [(dp/dS)L/(dp/ds)o] ~/2) and the coordinate T 
is a characteristic number of gravity, defined as the ratio of turbulent to gravity forces acting on 
the gas as T = [I(dp/dS)LI/(PL -- Po)g COS Ct] u2, where ct is the inclined angle of the pipe. As this 
model takes the gravity effects into consideration, the rotating effects of pipes could also be 
predicted by using the Coriolis acceleration 2o9 WL instead of the gravity one g cos ~t. The flow 
regimes observed in this experiment are denoted for the homogeneous bubbly flow regime by O, 
A, ©, <> and ~ ,  and for the slug flow with predominant regions of high void fraction (e >i 0.6) 
by ~ ,  • and I1. This transition boundary is seen to increase somewhat greater than the predicted 
one as shown by the - - -  line. 

When l/Ro is larger, when the rotating speed is high and the liquid flow rate is small, a 
predominant region of high void fractions appears on the back side near the outlet, as described 
above. This is confirmed to be the region accumulating bubbles, as shown in photographs 
(0.05 < 1/Ro < 0.12) by Patel & Runstadler (1978)• They also conducted an experiment on a 
mixed-flow pump (0.6 < 1/Ro < 1.0), and the void spread over all the impeller was observed when 
e0/> 0.071 (Patel & Runstadler 1978). According to our own experimental results in a radial-flow 
impeller (Murakami & Minemura 1974), a dominating region of high void fractions was observed 
near the back side of the blade in the inlet when 0•21 ~< l/Ro ~< 0.36 and 0.04 ~< e0 ~< 0,075, and a 
void was observed over the whole back side when 0•47 ~< l/Ro ~< 0.62 and 0.07 ~< ~0 ~< 0.09. This 
demonstrated a close relation with the present rotating channel at identical Ro. 

4. CONCLUSIONS 

A straight pipe having a square section is mounted radially on a horizontal disk and rotated 
around its vertical axis under two-phase flow conditions. The related hydraulic loss as well as the 
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Figure 14. Distributions of void fractions for low Ro (I/Ro = 0.2). 
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distr ibut ions o f  pressure and void fract ion were measured  under  a bubbly  flow re#me .  The  results 
obta ined  are summar ized  as follows: 

(1) Under  single-phase liquid flow conditions,  the friction factor  for  the s ta t ionary  
channel  (0 decreases with an increase in Re, and becomes constant  when 
Re />  2.5 x 104. The  resultant  loss rat io (/(0 o f  the rota t ing channel  ( to the 
s ta t ionary  one (0 is represented by a single curve for 1/Ro, and increases 
progressively f rom unity when 1/Ro exceeds a certain limit (1/Ro ~- 0.88 for  the 
upward  exit). 
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Figure 15. Flow regime map by Taitel & Dukler (1976). 

bubble 

0 0.o26 
A 0.086 
0 0.12 
<> o.14 
V 0.16 

Intermittent 
• 0.12 
• 0 .16 
• 0.2 



450 K. MINEMURA et al. 

(2) The pressure-loss multiplier for the stationary channel $~0 increases with an 
increase in E0. When Re is increased, ~b 2 decreases and becomes constant in the 
range Re/> 3 x 104. 

(3) When E 0 is constant, the relationship between 1/Ro and the pressure-loss 
multiplier for the rotating channel $ [ falls on a single curve and increases sharply 
when 1/Ro exceeds a certain limit (1/Ro ~-0.1). The greater the value E0, the 
greater the value ~b 2 becomes, and ~b20 begins to increase sharply with a lower 
value of 1/Ro. 

(4) When 1/Ro is small (1/Ro~<0.1), the radial pressure rise on the front side 
remains almost unaltered and that on the back side decreases in parallel in the 
range E0 ~< 0.05. The distributions of void fractions are hardly affected by ~0. 
When 1/Ro is greater, predominant regions of high void fractions appear in the 
inlet (r/r 3 <~ 0.02) and outlet (r/r 3 >t 0.45), and they expand with increasing e0. In 
such regions the pressure hardly rises in the radial direction. 

(5) The flow regime boundary for the bubble flows in the rotating channel can be 
approximately estimated with Taitel & Dukler's (1976) mapping method using 
Coriolis acceleration (2OgWL) instead of the gravity one (gcos ct). 
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